
Source Code Overlay Editor

ABSTRACT

The concept of operations for a new type of editor is described. The source code overlay editor
(SCOE) allows a user to improve computer source code artifacts by providing links, replacement
text, and the means to show or hide design and implementation details by traversing links and
causing text substitutions based on replacement text. Among other things these capabilities give the
author/reader an ability to use hyperlinked replacement text substitutions to hide or reveal either
source code or abstractions of source code as is most appropriate for the reader's current context
(level of understanding and purpose).

These methods will provide the programmer a means to better indicate why source code statements
are present and how a desired effect is implemented. The SCOE method offers a new type of
visualization ability to the programmer and source code maintainer that will facilitate problem
decomposition and documentation.

1.0 INTRODUCTION

"Software visualization is the systematic and imaginative use of the technology of interactive computer
graphics and the disciplines of graphic design, typography, color, cinematography, animation, and sound
design to enhance the comprehension of algorithms and computer programs" (1). The following
paragraphs detail a proposed methodology that is a new method for software visualization.

The four elements that are the core of the proposed SCOE technology, macro expansion, function
abstraction, hypertext linkage, and Graphical User Interface's, are not new to computer science. Today
however they have not been unified into the SCOE method described here, e.g., they have not been used in
the following manner to better our abilities to create and maintain computer programs.

The programmer can use the function abstraction provided through the programming language and macro
expansion as provided by preprocessor tool to create arbitrarily high or low (de)composition of a set of
actions as described in source code narrative. However both suffer serious problems when used in a 'flat
file sense' because navigating through source code text is awkward and the reader is easily confused due to
lexical scoping and cognitive effects. Further, parameter declarations are error prone and time-consuming,
making function abstraction an awkward means for such composition. The proposed SCOE method
leverages a common technology to offer another way to represent, visualize and navigate source code
artifacts. This new method allows the reader to decide the level of detail that is appropriate for the current
level of investigation.

2.0 REFERENCES

1. Software Visualization for Debugging, R. Baecker, C. DiGiano, A. Marcus, Communications of the
ACM, April 1997, Volume 40, Number 4, page 44.

3.0 DESCRIPTION OF SCOE (METHOD)

Figure 1 illustrates the process of defining replacement text, the basic functional element of SCOE
operation. Figures 2 and 3 illustrate some potential applications of the method. By allowing the
programmer to determine the contents of each replacement this editor provides the programmer with the
ability to

• associate human-oriented descriptive text with source statements

• replace source statements or replacement text with replacement text

DTIC QÜALIT2 i::C?IXÜ^ij I T.&slf I-*** tfl

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE

ADDRESS,

1. REPORT DATE 2. REPORT TYPE
Professional Paper

3. DATES COVERED

4. TITLE AND SUBTITLE

Source Code Overlay Editor

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Theodore F. Risko

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Air Warfare Center Aircraft Division
22347 Cedar Point Road, Unit #6
Patuxent River, Maryland 20670-1161

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

Naval Air Systems Command
47123 Buse Road Unit IPT
Patuxent River, Maryland 20670-1547

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

The concept of operations for a new type of editor is described. The source code overlay editor (SCOE) allows a user to improve computer
source artifacts by providing links, replacement text, and the means to show or hide design and implementation details by traversing links and
causing text substitutions based on replacement. Among other things these capabilities give the author/reader an ability to use hyperlinked
replacement text substitutions to hide or reveal either source code or abstractions of source code as is most appropriate for the reader's current
context (level of understanding and purpose).

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

17. LIMITATION
OF ABSTRACT

Unclassified

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Theodore F. Risko
19b. TELEPHONE NUMBER (include area
code)
(301)757-3475/342-2368

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Sid. Z39-18

Source Code Overlay Editor

eliminate (hide) source statements or replacement text

Through such capabilities the SCOE allows a user to tailor the contents of the artifact so that the reader is
presented with those details as is most appropriate for the level of understanding or state of the
examination. As a result, while reading an artifact the user may select an abstraction of interest (text for
which replacement text exists) and progressively examine finer levels of details leading ultimately to
source code. Similarly, the user could navigate the links in the opposite direction and move toward higher
and more human-oriented descriptions.

Navigating these links provides the user with the means for focusing on detail as is most appropriate. As
an example, a programmer could define a highest level of logical detail by using the appropriate
replacements to eliminate variable declarations and/or initializations or the details of error exception
handling. Such streamlining offers the reader a clear picture of the algorithmic details within a program.

4.0 CONCLUSIONS

When replacement text is used to describe program logic and actions at varying levels of detail then
traversing this series of text equivalents allows a reader to view the "program source code" at the level of
detail most appropriate for presenting the relevant aspects of a problem at a current level of understanding.
That is, the editor allows examination of detail that is at the context of the current state of knowledge or
area of focus of the reader. Through such editing and text representation techniques the SCOE provides the
programmer with new and improved abilities to create artifacts that may more clearly communicate
functions, structure, and purpose such as:

• create source code files that allow one to determine the purpose of source code statements, by examining
the associated human-oriented replacements that correspond to selected areas

• determine how desired outcomes stated at a high level of abstraction have been implemented using
program language statements

• selectively and optionally provide or delete text not directly related to understanding, for example
variable declarations within a function abstraction

• providing a means to allow descriptions of programs at a high level provides a means for rapid
familiarization with a programs organization and features. As Figure 3 illustrates such high level
descriptions allow a new reader to rapidly determine the area responsible for a particular action, and the
implementation details that determine how that section of code operates. Following linked replacement
text in turn allows determining the appropriate details at any level as is selected during the examination.

• Besides such singular, individual substitutions it is also possible to provide higher level, derived
capabilities such as groupings that associate several replacements all of a given type (for example all of a
given level of replacement). Such sets of multiple replacements could be used to create a view - by
conglomerating numerous replacements one could create a block replacement that causes the entire artifact
to be described at a specified level of detail. By giving the reader the ability to traverse these various views
of program source code the SCOE system may be used to facilitate composition, decomposition and
documentation - it allows creation of views of the program that are most appropriate for the level of
understanding and stage of examination as is occurring.

(Re)describing program text in these ways offers the ability to create improved documentation systems
thereby facilitating program maintenance. Having these editing and association capabilities available
within a code development editor/workstation should lead to numerous related capabilities as illustrated by
the following examples:

T<ß(Sh 7-P^a, *>fo

Source Code Overlay Editor

• providing a means for focusing attention on module interfaces and by so doing facilitate open-system
approaches to software development

• supporting methods for facilitating reverse engineering of computer programs

• devising methods for documenting higher level abstractions such as architectures and data and control
flow

• creating text systems that better provide and interrelate programs to their documentation

• exploration and research, such as on developing a generic programming language, this may ultimately
allow programming (more) independently from a computer source code languages

• through tagging of source code statements the identification of a certain class of statements. This may
facilitate the identification, location and inspection, removal or insertion of sets of statements added for a
purpose or with a set of changes. Obviously such tags would be invisible to the reader unless the reader
requested them to be visible e.g., during editing or inspection of tags.

• using these concepts within non-programming documents for tracking the source of or details on the
elements of a document

Because hyperlinking allows parameterless text replacement the method will be easy to use. Since the
content of the replacement text is not necessarily bound by syntax rules this method gives the user the
ability to easily associate user-defined and human-oriented descriptions to the source statement(s). This
new type of visualization created by the SCOE can be used to improve both the clarity of program source
code artifacts and the means by which these artifacts may be created and documented.

\ (RlS^ 2-#<fo (eft

Source Code Overlay Editor

W^Ä$^K^-^^-;*^,<*W!.fi?^ sMJv.!-*Hfe-v* 1
%$m>$*%^^x^^*^^W^^^^M

'*m+ j

:_ | _ | !

CD (2) (3)

This figure shows how a view of an area of code may be created by identifying the text to be associated with a replacement, entering replacement
text, and associating the replacement text with the area of interest. Note that a single selection of text is comprised of non-contiguous text.

(1) Select text that is to have an associated replacement.

(2) Enter a replacement text.

(3) Indicate the mapping of the replacement to the original.

Figure 1 - Basic SCOE Operation

\ i&'sko 1^ to 7fa

Source Code Overlay Editor

Example 1.

Source code selected for replacement:

if('p_tbI->CMyDBTbIl:: GctTblData()) {

crr_siring = "Failure Reading TbI 1";

reium (FALSE);}

if(!p_iM->CMyDBTbIl:: GeiTMDnia ()) {

err_string = "Failure Reading Tbl2";

relurn(FALSE); }

Example

Source code selected for replacement:

angle = angle / 360.0;

iangle = (int)angle + 15;

iangle = iangle * 30;

angle = (double) iangle;

Using the SCOE associate the following:

Read_ SubTablcs _Tbl l_and_TbI2

Using the SCOE associate ihc following:

Truncate_and_Increment_AngIe;

Examples of how the SCOE may streamline code through basic substitution. Using such associations allows creating human-oriented source artifacts

that state (parts of) the program at a higher level of abstraction than program source code.

Figure 2 - Code Streamlining

Tfösb M® V9

„Ulü tr o «,

111

HÜ
^4 > O u

I5.
8 x
s tu
ü |[
t —

<

<
o o
a.

.. a.

-. A

Hi ^
£ U

5 ^

H !H o
2 £ >

— c3 >* —
Q. a. ^ S
F ^ y >"

2 Ü

5; S

o
o

H
D
o
Q
H

b
a:

03
N

o
z

-)
o
Z
il

o
S
H

"HI

* = £•

< z < z
<
a: <
o o Ü o
a. a.

hi

Z S3
—1 ;,.

^ 5fc
z x
u3 UJ S2
^ z
= <

c c ~ c

o

s. o1 'i

JZ v ^ 1J

2 » "i 2 =

I H1 J 23 ^
^ m V^w " ■■
■S ° = = = 3
— 4} c3 w « re

S 3 ° 8 ° u

T3

>,

>
O

<u
•o
o
U
4>
O »-«
3
O

00 X

» as.^

o
z

£?•

x;

' I
CO 0)

n^ O o o
■4-1 0

t§
CO ^

0) O

c« cO

cC!2 = K ca c .-i

.2 .*>
"en ^
O <D

c
E a
2 «

o ^ E
>

J3
_o b o

F M o
(U u >»

XI E trt

t_ a) aj
u. a, o >
:*
o x:
o

ci
cs
X
u

U
c

U
Xj
o

t-< « t4-<

x:
_3 c

60 c
X

00

O c

CO

c
u
E u o
C3

"B.

_3

><

c u
E u o
ta

"H,
O aj

I)
X C u

E
x;
bO > •n C

1) c O
CO ?
a, o x;

c
o

o a,
E
o
o

Q

XI
o

3
bO

Vi

